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  Any sufficiently advanced technology is
    indistinguishable from magic

Arthur Clarke

Clarke’s Prediction “Laws”
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The short history of 
technology development
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Water mechanization:
canals, water wheels1770-1830

1870-1920 Electrification:
electricity, copper, steel

1910-1960 Motorization:
oil

1960-20?? Information technology:
microchip

20??-20?? Neurotechnology:
biochip, brain imaging

Steam mechanization:
coal, iron, steam engine1820-1880

Technology waves
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1958
1947

1904
2006

2011IBM Co. Itanium 2

TI Inc. the first IC

Fleming’s valve

Bell Labs the first transistor

From the tube to IC
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>10cm3

Commercial

Research

Evolution of the radio

~6.6mm3

Courtesy Zettl Research Group, Lawrence Berkeley 
National Laboratory and University of California at 
Berkeley

~36mm3

  m3μ~~
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Moore’s law

 24th century: Cpt. Picard’s iPad mini must have...
    ...CPU with ~1e60 transistors

 the human brain: ~ 1e10 neurones
 the human body: ~1e27 atoms
 the Universe: ~1e80 atoms
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Augmented technology 
distance 

 infinite
 external (shared)
 external (personal)
 internal (temporarily)
 internal (permanently)
 iCyborg ?
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Performance index

time

S-curves
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Implantable Technology
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Why the implants ?

File source: wikipedia.org
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Why the implants ?

Artificial Hip

 Human population
   is living longer

 We need medical care 
 Technology integration

    is inevitable

File source: wikipedia.org
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Artificial Hearing

Why the implants ?

 Human population
   is living longer

 We need medical care 
 Technology integration

    is inevitable

File source: wikipedia.org



© Robert Sobot at Telecom-Paristech, Paris France,  May 29, 2013

Heart pump
 In 2008, 29% of ALL deaths in 

Canada caused by cardiovascular 
diseases  

 A heart works similar to a 
piston engine

 Genetically modified animal 
subjects are essential for research

File source: wikipedia.org
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Heart pump

 PV conductance based sensor
 Small enough to fit in a ...

    ... mouse heart !
 Commercially available
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Heart pump
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Mouse heart

 ~1mL blood volume
 ~1/1000 of

      a human heart
 ~7mm long
 ~630±50 beats/min

~
7m

m

Courtesy of Dr. James P. Carson.
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Cardiac telemetry
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Telemetry system

 Permanently implanted 
 Short distance RF link
 Energy harvesting
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 Power consumption
 The system’s size
 Hostile environment
 Multidisciplinary design
 Ethical and legal issues
 ...

Telemetry system

Main challenges:
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PV Sensor
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PV sensor model

 Linear model
 Wei’s nonlinear model
 Dubois model
 Sensor calibration



© Robert Sobot at Telecom-Paristech, Paris France,  May 29, 2013

Baan’s model
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Figure 3: Two tetra–polar PV conductance based catheters implanted into both left and right ventricles of

a heart. The four ring electrodes are labeled a to d. (The right ventricle is visibly smaller, which requires

development of a new smaller catheter.)

Baan’s linear model

As a material, blood has both conductive and dielectric properties, hence, each inner segment of the heart

volume is considered as the equivalent resistor in parallel with a capacitor, whose height is determined by

the inter–electrode pair distance L and time–varying median cross–sectional area A(t), Fig. 3.

In deriving his linear model Baan et al. [11] makes the following four crude assumptions: a) the

intracardiac electric field distribution is uniform; b) the ventricular wall is perfectly insulated from the

cavity blood, i.e. the total measured conductivity is strictly due to the blood and not to the heart’s muscle;

c) a heart cavity has a cylindrical shape; and d) the catheter is stationary and always perfectly centred

along the cylinder’s axis.

Hence, straightforward calculation shows that the time–varying admittance (i.e. current/voltage ratio) of a

segment between two adjacent electrodes, consists of an in–phase component:

g(t)� =
1

R(t)
=

σ

L
A(t) +

�

L

dA(t)

dt
(1)

and an out–of phase component

g(t)�� = ω
�

L
A(t) (2)

where, R(t) is blood resistance, σ ≈ 0.7Ω−1m−1
is conductivity and � ≈ 7× 10

−10Fm−1
) dielectric

constant of blood [30]. Therefore, the second term in (1) may be neglected, because the change of
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cross–sectional area A(t) in time is tied to the heart pulse (a mouse heart beets up to 700 bpm), hence in

the first approximation the second term is consider not large enough to relative to the first term. Linear

approximation of the measured segment volume ∆V is simply volume of the cylindrical shape:

∆V (t) ≈ A(t)× L (3)

after substituting (3) into (1), we write:

g(t)� =
1

R(t)
=

σ

L2
V (t) (4)

Therefore, volume of the segment is calculated by measuring conductance that corresponds to the

resistance across the catheter length L, which is expressed as the difference of conductances between the

first two electrodes (ab) and electrodes (ac), i.e.

∆V (t) ≈ L2

σ

�
1

Rab
− 1

Rac

�
=

L2

σ
gb(t) = ρL2 gb(t) (5)

where, gb(t) is the instantaneous blood conductance, and ρ = 1/σ is the blood resistivity in (Ωm). By visual

inspection of Fig. 3 it should be obvious that this linear approximation is very crude for the case of a heart

that is small relative to the catheter’s size, as is the case of a small mouse. However, if the heart is large

and if the catheter is manufactured with several inner electrode ring pairs, then the total instantaneous

volume V (t) is measured more accurately as the sum of the individual volume sections ∆Vn(t), as

V (t) =
n→∞�

n=1

∆Vn(t) (6)

where, each volume section ∆Vn(t) is calculated as in (5). Additionally, this method produces relative

measurement that is function of the blood conductance σ, therefore the absolute value of the conductance

must be determined beforehand by using an independent measurement methods.

Simplest way to increase accuracy of (5) is to add experimentally determined linear correction factors

V (t) = k ρL2 gb(t) + Vc (7)

where, k is an empirical slope correction factor, and Vc is the linear offset empirical correction factor. The

two empirical linear correction factors are determined by comparing values for the volume V (t) as

calculated from the analytical expression (7) with the experimentally determined value after using an

electromagnetic flow probe or Doppler ultrasound volume measurement method. Nevertheless, we conclude

that the first order linear approximation model is overly simplified.

7

cross–sectional area A(t) in time is tied to the heart pulse (a mouse heart beets up to 700 bpm), hence in

the first approximation the second term is consider not large enough to relative to the first term. Linear

approximation of the measured segment volume ∆V is simply volume of the cylindrical shape:

∆V (t) ≈ A(t)× L (3)

after substituting (3) into (1), we write:

g(t)� =
1

R(t)
=

σ

L2
V (t) (4)

Therefore, volume of the segment is calculated by measuring conductance that corresponds to the

resistance across the catheter length L, which is expressed as the difference of conductances between the

first two electrodes (ab) and electrodes (ac), i.e.

∆V (t) ≈ L2

σ

�
1

Rab
− 1

Rac

�
=

L2

σ
gb(t) = ρL2 gb(t) (5)

where, gb(t) is the instantaneous blood conductance, and ρ = 1/σ is the blood resistivity in (Ωm). By visual

inspection of Fig. 3 it should be obvious that this linear approximation is very crude for the case of a heart

that is small relative to the catheter’s size, as is the case of a small mouse. However, if the heart is large

and if the catheter is manufactured with several inner electrode ring pairs, then the total instantaneous

volume V (t) is measured more accurately as the sum of the individual volume sections ∆Vn(t), as

V (t) =
n→∞�

n=1

∆Vn(t) (6)

where, each volume section ∆Vn(t) is calculated as in (5). Additionally, this method produces relative

measurement that is function of the blood conductance σ, therefore the absolute value of the conductance

must be determined beforehand by using an independent measurement methods.

Simplest way to increase accuracy of (5) is to add experimentally determined linear correction factors

V (t) = k ρL2 gb(t) + Vc (7)

where, k is an empirical slope correction factor, and Vc is the linear offset empirical correction factor. The

two empirical linear correction factors are determined by comparing values for the volume V (t) as

calculated from the analytical expression (7) with the experimentally determined value after using an

electromagnetic flow probe or Doppler ultrasound volume measurement method. Nevertheless, we conclude

that the first order linear approximation model is overly simplified.

7

cross–sectional area A(t) in time is tied to the heart pulse (a mouse heart beets up to 700 bpm), hence in

the first approximation the second term is consider not large enough to relative to the first term. Linear

approximation of the measured segment volume ∆V is simply volume of the cylindrical shape:

∆V (t) ≈ A(t)× L (3)

after substituting (3) into (1), we write:

g(t)� =
1

R(t)
=

σ

L2
V (t) (4)

Therefore, volume of the segment is calculated by measuring conductance that corresponds to the

resistance across the catheter length L, which is expressed as the difference of conductances between the

first two electrodes (ab) and electrodes (ac), i.e.

∆V (t) ≈ L2

σ

�
1

Rab
− 1

Rac

�
=

L2

σ
gb(t) = ρL2 gb(t) (5)

where, gb(t) is the instantaneous blood conductance, and ρ = 1/σ is the blood resistivity in (Ωm). By visual

inspection of Fig. 3 it should be obvious that this linear approximation is very crude for the case of a heart

that is small relative to the catheter’s size, as is the case of a small mouse. However, if the heart is large

and if the catheter is manufactured with several inner electrode ring pairs, then the total instantaneous

volume V (t) is measured more accurately as the sum of the individual volume sections ∆Vn(t), as

V (t) =
n→∞�

n=1

∆Vn(t) (6)

where, each volume section ∆Vn(t) is calculated as in (5). Additionally, this method produces relative

measurement that is function of the blood conductance σ, therefore the absolute value of the conductance

must be determined beforehand by using an independent measurement methods.

Simplest way to increase accuracy of (5) is to add experimentally determined linear correction factors

V (t) = k ρL2 gb(t) + Vc (7)

where, k is an empirical slope correction factor, and Vc is the linear offset empirical correction factor. The

two empirical linear correction factors are determined by comparing values for the volume V (t) as

calculated from the analytical expression (7) with the experimentally determined value after using an

electromagnetic flow probe or Doppler ultrasound volume measurement method. Nevertheless, we conclude

that the first order linear approximation model is overly simplified.

7

cross–sectional area A(t) in time is tied to the heart pulse (a mouse heart beets up to 700 bpm), hence in

the first approximation the second term is consider not large enough to relative to the first term. Linear

approximation of the measured segment volume ∆V is simply volume of the cylindrical shape:

∆V (t) ≈ A(t)× L (3)

after substituting (3) into (1), we write:

g(t)� =
1

R(t)
=

σ

L2
V (t) (4)

Therefore, volume of the segment is calculated by measuring conductance that corresponds to the

resistance across the catheter length L, which is expressed as the difference of conductances between the

first two electrodes (ab) and electrodes (ac), i.e.

∆V (t) ≈ L2

σ

�
1

Rab
− 1

Rac

�
=

L2

σ
gb(t) = ρL2 gb(t) (5)

where, gb(t) is the instantaneous blood conductance, and ρ = 1/σ is the blood resistivity in (Ωm). By visual

inspection of Fig. 3 it should be obvious that this linear approximation is very crude for the case of a heart

that is small relative to the catheter’s size, as is the case of a small mouse. However, if the heart is large

and if the catheter is manufactured with several inner electrode ring pairs, then the total instantaneous

volume V (t) is measured more accurately as the sum of the individual volume sections ∆Vn(t), as

V (t) =
n→∞�

n=1

∆Vn(t) (6)

where, each volume section ∆Vn(t) is calculated as in (5). Additionally, this method produces relative

measurement that is function of the blood conductance σ, therefore the absolute value of the conductance

must be determined beforehand by using an independent measurement methods.

Simplest way to increase accuracy of (5) is to add experimentally determined linear correction factors

V (t) = k ρL2 gb(t) + Vc (7)

where, k is an empirical slope correction factor, and Vc is the linear offset empirical correction factor. The

two empirical linear correction factors are determined by comparing values for the volume V (t) as

calculated from the analytical expression (7) with the experimentally determined value after using an

electromagnetic flow probe or Doppler ultrasound volume measurement method. Nevertheless, we conclude

that the first order linear approximation model is overly simplified.

7

Stroke volume from intraventricular dimensions 3 29 

Methods and materials 

Our method of obtaining stroke volume and cardiac 
output is based on  intracardiac measurement of the 
electrical impedance of the time-varying quantity of 
blood contained within the left ventricular cavity. 
For this purpose, a size 7F catheter equipped with 
eight equidistant cylindrical electrodes (platinum) 
was advanced retrogradely into the left ventricle as 
shown schematically in fig 1. Depending on heart 
size, catheters with interelectrode distances varying 
from 8 to 1 1  mm were used such that electrode 8 was 
situated at the level of the aortic valve and electrode 
1 near the apex. A constant amplitude alternating 
current of 0.4 mA (p-p value) with a frequency of 20 
kHz was applied between the outer two electrodes, 
while electrodes 2 to  7 were used to measure voltages 
generated by the current and the impedance of the 
blood within the cavity. The volume of blood can be 
considered mainly to consist of five segments 
stacked together. Their boundaries are defined by 
the inner surface of the cardiac wall and by the equi- 
potential surfaces through the electrodes (fig 1) 
forming ventricular cross sections perpendicular t o  
the current density lines which run between 
electrodes 1 and 8. 

Since blood has both conductive and dielectric 
properties, each segment can be considered as a 
resistor in parallel with a capacitor with constant 

height (the inter-electrode distance L) and time- 
varying median cross-sectional area A(t). 

Assuming as  a first approximation that the 
ventricular wall is insulated from the cavity blood, 
straightforward calculation shows that the time- 
varying admittance (current /voltage) of a segment 
between two adjacent electrodes, consists of an 
in-phase component : 

0 E dA(t) 
- A(t) + - - L L d t  

and a n  out-of-phase component: 

& 
w - A(t) (2) L 

in which w represents the angular frequency of the 
current, o the conductivity and E the dielectric 
constant of blood. Because the latter is very small 
(about 7 x 1O-Io F.m-') compared with Q (about 0.7 
W . m - l )  the second term in equation ( I )  vanishes 
against the first, even though dA/dt  may be large. 
Therefore, the value of the median cross sectional 
area A(t) of the segment, and thus its volume V(t) 
z A(t) L, may be obtained by measuring the 
conductance ( I  /resistance = 1 /R), given in good 
approximation by: 

(3) 

The same information could be obtained from 
equation (2) by measuring capacitance, but techni- 
cally this would be more difficult. The segment's 
contribution A-V to the total stroke volume follows 
from the difference in conductance at  beginning (be) 
and end (ee) of ejection : 

1 /R(t)= 0 V(t) /L2 

(4) 

Total stroke volume (SV) is obtained by summation 
of the contributions A V  from the five segments 
between electrodes 2 and 6: 

FIG 1 Schematic representation of eight-electrode 
catheter placed along the long axis of the lefr ventricle. 
Dashed lines indicate equipotential surfaces defining blood 
segments. 

Since L is known, absolute calibration of the 
method merely requires measurement of the specific 
conductance of a blood sample. For  this purpose, a 
quantity of 6 cm3 arterial blood is placed in a 
cylindrical cuvette with four electrodes. The outer 
two are used to  apply 20 kHz current, the inner two, 
defining a precise volume of 2 cm3 of blood, to 
measure voltage, and thus conductivity, cr. For the 
catheter measurements a six-channel electronic 
circuit was built, both to generate the current and to  
measure dynamically the resistance values of the five 
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Wei’s model
Wei’s nonlinear model

In order to compensate for the intrinsic error caused by the nonuniform internal electric field, while still

keeping the other assumptions used in the linear model, Wei et al. [12] suggested the following nonlinear

model.

Blood conductance gb can be found by definition

gb =
I

V
=

�
a
�J d�a

−
�
l
�E d�l

=

�
a σ

�E d�a

−
�
l
�E d�l

(8)

where I is current (A), V is voltage (V), �E is electric field intensity (V/m), �J is current density (A/m2), a is

a surface enclosing the source electrode, l is the path length for potential calculation, and σ is the blood

conductivity (the reciprocal of blood resistivity ρ.)

Straightforward application of Laplace’s equations ∇2V = 0 and �E = −∇V for the case of cylindrical

coordinate system (r, θ,ϕ) yields

1

r2
∂

∂r

�
r2

∂V

∂r

�
+

1

r2 sin θ

∂

∂θ

�
sin θ

∂V

∂θ

�
+

1

r2 sin2 θ

�
∂2V

∂ϕ2

�
= 0 (9)

The additional assumption that must be made is that the source electrodes are spheres with radius placed

in an infinite homogeneous medium, which makes potential V independent of ϕ. It can be shown [12,13]

that the total blood admittance Y is

Y =
π d

�
d2 − L2

�
(σb + jωεb)

4L
×

�
1�

a20 + d2/4
− 1�

R2 + d2/4

�
(10)

where, σb and εb are the electrical conductivity and permittivity respectively, of the fluid, ω is frequency of

the AC current, d is distance between two source ring electrodes (a and d), L is the distance between the

two receiving inner ring electrodes (b and c), and a0 is radii of the spherical electrodes; and that the

nonlinear analytical function for volume V vs. blood conductance gb looks as

V =
β

(ginf − gb)
2 − β

g2inf
(11)

where,

β = f(SV, ginf , gbmax, gbmin) (12)

is the empirical calibration factor and, SV is the real stroke volume as measured by using an independent

method, ginf is conductance of an infinite thick medium (i.e. assuming that the radius of the sensing
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Fig. 2. Two source electrodes and two sensing electrodes are placed in an
infinite media.

separated by a distance (see Fig. 2), the electric field intensity
caused by those two electrodes is superposable

(11)

where

(12)

If two extra voltage-sensing electrodes, which do not carry cur-
rent, are placed between the two source electrodes separated by
a distance (see Fig. 2), the conductance of this infinite medium

measured between the two sensing electrodes can be es-
timated by using (3) and (11), and the result is

(13)

It assumes that the radius of the sensing electrodes is small
enough so that their influences on the electric field distribution
are negligible. In both in vivo and in vitro experiments, the mea-
sured fluid is surrounded with either myocardium or a container
wall, which confines the distribution of electric field and makes
the measured conductance a function of the fluid volume. To
further simplify the problem, assume that the measured finite
fluid volume is large enough so that the electric field intensity
still can be calculated by (11). If the shape of the measured fluid
is a cylinder with a radius of R, i.e., its cross-sectional area is

, then the conductance of the measured fluid is

(14)

Combining (2), (13), and (14) yields

(15)

Equation (15) is derived from a cylinder, but the shape of ven-
tricle is not cylindrical. This equation does not have an empir-
ical factor, like in the classic equation, to force volume dif-
ferences resulting from the smallest and largest blood conduc-
tance ( and ) the same as independently measured
SV. Therefore, an empirical factor, , must be introduced to ap-
proach this drawback wherein all of the dimensional constants
( , etc.) are included in this factor. Furthermore, since the ra-
dius of the electrodes is small compared to the distance be-
tween the two source electrodes , the factor
in (15) is approximately 1. The improved equation, which is
heretofore referred to as “the analytic approximation,” is

(16a)

where the value of can be determined experimentally by

(16b)

This analytic approximation was derived under several un-
realistic assumptions. However, without these assumptions to
simplify the problem, a true analytic solution may not be calcu-
lable. Hence, an empirical method was used to derive the con-
ductance–volume relationship in the following sections.

B. In Vitro KCl Solution Experiments and Simulations

In vitro experiments were performed in KCl solution to ex-
amine the conductance-volume relationship of the conductance
catheter. Several cylindrical holes were drilled in thick blocks
of Plexiglas. The conductivity of the Plexiglas is essentially
zero. The conductivity of KCl solution (0.1 mole of KCl in
1 liter of water) used to fill those holes was 1.26 S/m at 23
C. Both miniaturized mouse (SPR-839) and rat (SPR-838)

conductance catheters made by Millar Instruments, Houston,
Texas, were used to evaluate the conductance-volume relation-
ship in different volume ranges. The mouse catheter has four
0.25-mm-long platinum ring electrodes with 0.2-mm radius.
The interelectrode center-to-center spacing for the mouse
catheter is 0.5, 4.5, and 0.5 mm, respectively. The rat catheter
has four 0.25-mm-long platinum ring electrodes with 0.2-mm
radius. The interelectrode spacing for the rat catheter is 0.5,
9.0, and 0.5 mm, respectively. The true volume is defined as
the solution volume between the two inner voltage-sensing
electrodes.

The catheter was inserted into the center of the cylindrical
hole and fixed using a mechanical holder. It is important for
reproducibility for the catheter to be exactly in the center. The
block of plexiglas was placed on a platform whose height
is adjustable to control the depth of catheter insertion. The
catheter depth is defined as the distance between the fluid surface
and the top of the top electrode. A constant 10-kHz, 30- A
peak excitation ac current was applied to the two outermost
electrodes to generate the electric field. The voltage difference
between two inner electrodes was measured. The magnitude of
the voltage signal from the two inner electrodes is proportional
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Dubois’ model
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Figure 5: Geometry of catheter placed in a cylindrical ventricle with a conducting fluid surrounded with

infinitely thick muscle that is used in Dubois model.

surrounding layer of the heart muscle, Fig 5, Dubois model builds upon the existing knowledge by

specifically addressing the issue of the parallel admittance. Instead of accounting only for the blood

properties, as in (10), Dubois also applies the same expression to the surrounding heart muscle tissue.

Hence, the total measured admittance (Y ) becomes the sum of blood (Yb) and muscle (Ym) admittances,

i.e.

Y = Yb + Ym (13)

where, expressions for both blood admittance Yb is as per (10) with the appropriate indexes and the

boundary conditions of (a0 ≤ x ≤ R). The muscle admittance follows the same equation (10), however, the

boundary conditions must be set as (a0 ≤ R ≤ ∞), Fig 5. It can be shown [13] that analytical expression

for blood volume can be expressed as

V = −πL

�
d2

4
−

βπ2d2
�
d2 − L2

�
(∆σ + jω∆ε)2

16L2 (Y − Yinf)
2

�
(14)

where,

Yinf =
π d

�
d2 − L2

�
(σb + jωεb)

4L
�

a20 + d2/4
(15)

and, ∆σ = (σm − σb), ∆ε = (εm − εb), and β = f(SV, Y ) is an empirical calibration factor that is meant to

compensate for the error due to the use of cylindrical model. Muscle admittance (Ym) with boundary

condition at R = ∞ is Yinf .
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Fig. 1. Illustrations of the catheter insertion methods through (a) LV apex or
(b) carotid, and illustrations of possible (c) longitudinal and (d) radial deviations
of the catheter position.

to solve this issue:

Vol =
γ

γ − (Gmeas − Gp)
ρL2(Gmeas − Gp) (2a)

⇒ Vol =
γ

γ − gb
ρL2gb (2b)

where γ is the calibration factor [7]. This equation is referred to
as “the nonlinear conversion equation” here. In fact, although the
nonlinear equation was not derived by assuming a homogeneous
electric field, it is still derived under the other two assumptions:
symmetrically cylindrical ventricle and center-placed catheter.
Therefore, a calibration factor γ is still required to calibrate
the changed volume–conductance relationship caused by these
factors. Similarly, γ can be determined by forcing the volume
difference resulting from the nonlinear conversion equation to
be the same as the independently measured SV. Mathematically,
it can be calculated by

γ =
−b ±

√
b2 − 4ac

2a
(2c)

where

a = SV − ρL2(gb-ED − gb-ES)

b = −SV(gb-ED + gb-ES)

c = SV gb-EDgb-ES .

The nonlinear conductance-to-volume conversion equation has
been shown to outperform the classic conversion equation
in Plexiglas cylindrical chamber experiments by placing the
catheter along the central longitudinal axis of the chambers [7].

Theoretically, the variations caused by the nonideal factors
should be compensated for more or less by the calibration fac-
tors, 1/α and γ. This compensation is indeed the purpose of

introducing these calibration factors. Nevertheless, this problem
has not been investigated thoroughly yet. Similarly to the previ-
ous literature, miniaturized cylindrical chambers with volumes
in the mouse-LV range are used first to evaluate the calibration
capacity of the two equations [7], [14]. However, due to the
tiny physical size of the chambers, it is difficult to measure and
determine the catheter position inside the chamber exactly, ex-
cept for one special position: when the catheter is placed along
the central longitudinal axis, the measured conductance reaches
its maximum [13]. Hence, it is possible to locate this special
position experimentally. Therefore, once the modeling work is
validated by comparing the simulation results with the experi-
mental data for the center-placed catheter case, numerical simu-
lations may provide more accurate results for off-center-placed
catheter cases [7]. Moreover, numerical models constructed by
finite-element method (FEM) have been utilized and validated in
many conductance catheter-related research [7]–[10], [14]–[16].
In fact, a preliminary version of this study using cylindrical
FEM models has appeared, but the impact of myocardium is
not considered [14]. However, myocardial contribution is ac-
tually one of the main factors to influence the accuracy of the
volume estimation method [7], [8], [10], [12]. Therefore, it is
necessary to examine the effects of myocardium by including
it into the cylindrical FEM models. In this paper, the effects
of the catheter position deviations on the volume–conductance
relationships are investigated by models with myocardium. Fur-
thermore, since the shape of mouse LV is not a perfect cylinder,
LV FEM models built from mouse thoracic MRI images are
used finally to test the two conversion equations.

II. METHODOLOGY

A. Cylindrical Finite-Element Models

Finite-element models were constructed using COMSOL
Multiphysics. The construction of cylindrical FEM models has
been described in our preliminary work [14]. The only difference
is that myocardium is incorporated by embracing the previous
cylindrical models with a layer of myocardium-mimicked ma-
terial, as illustrated in Fig. 2(a). The thickness of the embraced
material is set to 1 mm, according to the mouse MRI thoracic
images [9], [10]. The conductivity of the embraced material is
set to 0.17 S/m, its permittivity is set to 3.419 × 10−7 F/m, and
the conductivity of the cylinder is set to 0.93 S/m to represent
blood [10].

In previous studies, the catheter is typically assumed to be
placed along the central longitudinal axis of cylindrical cham-
bers [1], [7]. Nevertheless, by using either of the mentioned
catheter insertion methods, the catheter may not be placed ex-
actly along the LV central long axis. Moreover, it is difficult to
determine whether or not the proximal electrode is just within
the myocardial wall. In fact, the catheter position within the
cylinder-like environment can be indicated by its radial and lon-
gitudinal positions. As a result, two terms corresponding to the
radial and longitudinal positions of the catheter can be defined—
catheter radial distance and catheter depth.

The catheter radial distance is defined as the distance between
the long axis of the catheter and the central long axis of the LV,

C.L. Wei, 2009

Main challenge:

 Catheter insertion and mechanical bending
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Energy Harvesting
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inductive
coupling

coeffi
cient

is
function

of
both

linear
and

angular
displacem

ents
betw

een
the

tw
o
coils,

i.e. M
=
f(d,Θ

), w
hose

geom
etry

is
depicted

in
F
ig. 11.

T
herefore, the

received
energy

levels
vary

over
a

w
ide

range.
T
his

situation
poses

a
problem

for
norm

al operation
of
the

im
planted

signal processing
and

com
m
unication

electronics.
C
onsequently, it

is
im
portant

to
design

an
effi

cient
im
plantable

voltage

regulator
that

also
consum

es
a
m
inim

al am
ount

of
energy

for
its

ow
n
operation

w
hile

providing
continuous

pow
er
to

the
load.

Inductance coupling background

Since
the

m
axim

um
pow

er
transfer

can
only

be
achieved

w
hen

the
external and

im
planted

inductors
are

perfectly
aligned, the

challenge
is
to

design
a
pow

ering
system

that
w
ould

have
low

sensitivity
to

the
coil

orientation
and

distance
[20, 42].

Such
designs, w

hich
are

m
ainly

focused
on

the
generation

of
constant

m
inim

um
pow

er
level inside

the
subject’s

cage, have
been

investigated
in
[43].

W
hen L

1 and L
2 are

the
self–inductance

of
the

tw
o
coils, M

and k
are

related
by

M
=
k �

L
1L

2

(16)
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Energy harvesting sources

Table 1: Energy–harvesting sources.

Energy source Performance Note

Ambient RF < 1µW/cm2
A few mW with a short distance inductive coupled

systems [20].

Ambient light
100mW/cm2

(direct sunlight)

100µW/cm2
(office light)

Assuming common polycrystalline solar cells at

16%-17% efficiency, while standard monocrystalline

cells approach 20%.

Thermoelectric 60µW/cm2
at ∆T = 5

◦C; typical thermoelectric generators ≤
1% efficient for ∆T < 40

◦C.

Vibrational
4µW/cm3

(human)

800µW/cm3
(machine)

Predictions for 1 cm
3
generators.

Ambient airflow 1mW/cm2
Demonstrated in microelectromechanical turbine at

30 liters/min.

Push buttons 50µJ/N MIT Media Lab Device.

Hand generator 30W/kg Nissho Engineering’s Tug Power.

Heel strike 10− 800µW 7W potentially available (1cm deflection at 70kg per

1Hz walk)
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Figure 9: Block diagram of a wireless power transfer system for implantable telemetry.
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Fuel Cell Design
A variety of mechanical designs for bioimplantable biofuel cells

have been described in a literature spanning at least half a century
[19]. A number of physical, electronic, and electrochemical factors
also influence the voltage and current output of a biofuel cell.
These include fuel cell and electrode geometry; electrode and
membrane spacings; redox potentials of fuel cell components;
internal and load impedances; and environmental conditions in
which the cell operates, including fuel substrate concentration,
environmental temperature and pH, and the presence of chemical
species capable of driving parasitic side reactions. Many of these
aspects of fuel cell design have been modeled in detail and
measured empirically in real systems [32,33]. As described in the
Methods Section and as shown in Figures 1, 2, and 3, the novel
design and manufacturing process we describe here is a version of
a classic half-open, two-chamber design [19,34,35], sized and
shaped to fit a particular anatomic compartment, and constructed
using semiconductor fabrication techniques that could in principle
permit manufacture together with integrated circuits on a single
silicon wafer.

Structure of This Paper
This paper is structured as follows. In the Results and

Discussion Section we describe the performance of our glucose
fuel cell. In the Methods Section we address several topics in
detail. First, we discuss solid-state catalysis of glucose oxidation

from a theoretical perspective, and explain the operating principles
of our fuel cell, including its mechanism of separating the
oxidation and reduction reactions, even though their reactants,
glucose and oxygen, naturally occur mixed in physiologic
compartments. Next, we describe our CMOS-compatible process
for fabricating implantable glucose fuel cells. In that subsection we
also describe our approach to characterizing the materials and
electrochemical properties, as well as the power-generating
performance of the fuel cells. We then discuss the power available
from circulating glucose in human physiologic compartments, and
the suitability of the cerebrospinal fluid as a physiologic niche for
power harvesting. We describe a detailed model of glucose and
oxygen consumption by a fuel cell implanted in the subarachnoid
space surrounding the human brain, and analyze the impact of
such a fuel cell on glucose and oxygen homeostasis.

Results and Discussion

Device Characterization
Anode surface roughness by scanning electron

microscopy. The efficiency of the fuel cell critically depends
on its ability to catalyze the oxidation of glucose at the anode. Our
device uses a solid-state platinum anode catalyst, whose catalytic
capacity is directly related to the number of atomic sites it can
provide on its surface. We describe a CMOS-compatible process
for electrode surface roughening to increase effective electrode
surface area, and hence catalytic capacity, in the Methods Section.

Figure 1. Power Extraction from Cerebrospinal Fluid by an Implantable Glucose Fuel Cell. Conceptual schematic design for a system that
harvests power from the cerebrospinal fluid, showing a plausible site of implantation within the subarachnoid space. The inset at right is a
micrograph of one prototype, showing the metal layers of the anode (central electrode) and cathode contact (outer ring) patterned on a silicon
wafer. Image Credit: Meninges and Vascular Anatomy courtesy of the Central Nervous System Visual Perspectives Project, Karolinska Institutet and Stanford
University.

Glucose Fuel Cells for Brain-Machine Interfaces

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38436

Energy harvesting sources

Thermoelectric - Peltier

Micro glass-fuel cell

Piezo vibrational cell

Figure 1: Schematic representation of an abiotically catalyzed glucose-oxygen
fuel cell. Glucose (C6H12O6) is oxidized on the anode, thus generating gluconic
acid (C6H12O7) and protons. These protons cross the conducting membrane
and reach the cathode to reduce the oxygen [3].

cells has been studied since the 1960’s [2]. Besides the long-term stability, these
devices have good sterilizability and biocompatibility, due to the use of noble
metals as catalysts. A schematic example of an abiotically catalyzed fuel cell
working with glucose is reported in Fig. 1. In that example, glucose (C6H12O6)
is oxidized on the anode site, thus generating gluconic acid (C6H12O7) and
protons. These protons cross the conducting membrane and reach the cathode
to reduce the oxygen. The electrons obtained by means of the oxidation are
used to generate power.

In Ref. [3] the state of the art of glucose fuel cells abiotically catalyzed is
reported. During in vitro experiments, glucose fuel cells abiotically catalyzed
have generated up to 50 µW/cm2 [8]. Experiments in vivo, performed on a
dog, have generated 2.2 µW/cm2 over a period of 30 days [9]. Finally, Ref. [10]
proposed an abiotically catalyzed glucose fuel cell that operates in tissue rather
than in blood stream. Since oxygen and glucose are both dissolved into intersti-
tial fluids, it is difficult in that case to oxidase glucose without, simultaneously,
reducing oxygen. If combined, these two reactions generate an electrochem-
ical short-circuit that compromises the correct functioning of the device. To
mitigate this drawback, Ref. [10] proposed to reduce the oxygen into an outer
oxygen-selective cathode. Thus, an anoxic region is generated inside the fuel cell
and the glucose can be oxidized. The device presented by [10] can operate for
224 days. The power generated in the beginning of this time was 3.3 µW/cm2,
with an open-circuit voltage of 337 mV; the power generated at the end of the

3

Glucose Bio-fuel cell
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RF energy harvesting
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Figure 10: Electrical model for the power transfer system.

because if energy being transmitted through a living tissue has too high radiation density level, then it can

permanently damage the cells it passes through. In other words, the design of a mouse cage with the

embedded RF energy harvesting system, Fig. 8, is not much different from a microwave oven design.

The reason for ambiguity related to the accepted power levels is that, despite a large body of publicly

available literature related to the topic of mobile phone radiation and health, there is no consensus on what

energy level exactly is considered to be dangerous for the living tissue. Discussion on that topic is beyond

the scope of this paper, hence, in our research we take conservative approach and keep the transmitted

energy levels significantly below those generated by modern cellphones.

Inductive–coupling resonance

Considering that the RF energy transmission efficiency is the main design parameter, the bottleneck of the

remote powering link is generally at the inductive link because the coupling factor between the coils of the

inductive link is usually very small. Therefore, these coils should be designed properly to achieve high

power transfer efficiency [20,21].

Inductive–coupling–based power transfer requires two coils (primary and secondary coils), and the

efficiency of power transfer between the coils is a strong function of the coil dimensions and distance

between them. Therefore, the recent alternative method of resonance–based power delivery [20,40] is

explained through the coupled–mode theory [41], which is less sensitive to changes of the coil distance and

typically employs two pairs of coils: one in the external circuit called driver and primary coils, and the

other in the implant itself called secondary and load coils, Fig. 10. Most of the work in this area revolves

15
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Figure 11: Diagram of two non–coaxial and non–parallel circular coils cross–section. Relative location, and

therefore the coupling coefficient M , of the two power transfer coils (external and implanted) is defined by

horizontal (dx), vertical (dy), and angular (θ) misalignments. (The plot is not to scale.)

around static large radii coils for relatively high power transfer applications [40].

However, for low–power applications when the subject carrying the implant moves freely inside the

controlled space, the two inductors continuously change their relative position in space. Hence, the

inductive coupling coefficient is function of both linear and angular displacements between the two coils,

i.e. M = f(d,Θ), whose geometry is depicted in Fig. 11. Therefore, the received energy levels vary over a

wide range. This situation poses a problem for normal operation of the implanted signal processing and

communication electronics. Consequently, it is important to design an efficient implantable voltage

regulator that also consumes a minimal amount of energy for its own operation while providing continuous

power to the load.

Inductance coupling background

Since the maximum power transfer can only be achieved when the external and implanted inductors are

perfectly aligned, the challenge is to design a powering system that would have low sensitivity to the coil

orientation and distance [20,42]. Such designs, which are mainly focused on the generation of constant

minimum power level inside the subject’s cage, have been investigated in [43].

When L1 and L2 are the self–inductance of the two coils, M and k are related by

M = k
�

L1L2 (16)
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RF energy harvesting

Main challenges:
 Modelling
 Simulation tools
 Manufacturing and 

    packaging
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RF energy harvesting
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RF energy harvesting
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RF energy harvesting
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 Power transmission losses
 The subject’s movement
 Maximum allowed power
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PV sensor interface
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Biocompatible packaging

Main challenges:
 Hostile environment
 Antenna integration
 Manufacturing
 Multidisciplinary
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Our future anatomy?

 direct brain to sound, video, radio, and gps interface
 the inner ear language translator
 bi-directional brain to brain and machine interface
 artificial limbs, titanium skeleton, ... 
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 ultra-low volume size RFIC
 processing algorithms
 3D IC packaging
 power scavenging
 bio-battery
 heat management
 complexity
 self-repair
 ...

Closing comments
Intensive research, created opportunities: 



© Robert Sobot at Telecom-Paristech, Paris France,  May 29, 2013

Kyle, Gail, Kyle, Kaidi, Shawon, Sneha, Sorin, and myself
(Lijun and Abdul not present) 

Implantable Systems 
Laboratory



© Robert Sobot at Telecom-Paristech, Paris France,  May 29, 2013

Our sponsors



© Robert Sobot at Telecom-Paristech, Paris France,  May 29, 2013

Our sponsors


