Clarke's Prediction "Laws"

 Any sufficiently advanced technology is indistinguishable from magic

Arthur Clarke

Implantable Telemetry Systems: the State of the Art and Challenges

Robert Sobot

- The short history of technology development
- Implantable technology
- Technology and the human body
- Closing comments

The short history of technology development

Technology waves

From the tube to IC

Evolution of the radio

Commercial

~6.6mm³

ĭsκu

82

Courtesy Zettl Research Group, Lawrence Berkeley National Laboratory and University of California at Berkeley

© Robert Sobot at Telecom-Paristech, Paris France, May 29, 2013

Research

~µm³

Moore's law

Moore's law

Q 24th century: Cpt. Picard's iPad mini must have... ...CPU with \sim 1e60 transistors \bigcirc the human brain: ~ IeIO neurones \bigcirc the human body: ~le27 atoms \bigcirc the Universe: ~ Le80 atoms

Augmented technology distance

© Robert Sobot at Telecom-Paristech, Paris France, May 29, 2013

S-curves

Why the implants ?

Total Artificial Heart

Right Rentricle

Human Heart

File source: wikipedia.org

Why the implants ?

 Human population is living longer
 We need medical care
 Technology integration is inevitable

File source: wikipedia.org

Why the implants ?

'estern 😿

Artificial Hearing

Human population is living longer We need medical care Technology integration is inevitable

Heart pump

In 2008, 29% of ALL deaths in
 Canada caused by cardiovascular
 diseases
 A heart works similar to a

piston engine

Genetically modified animal

subjects are essential for research

File source: wikipedia.org

Heart pump

PV conductance based sensor
 Small enough to fit in a ...
 ... mouse heart !
 Commercially available

Heart pump

electrode

a

b

Mouse heart

Courtesy of Dr. James P. Carson.

Cardiac telemetry

Telemetry system

Telemetry system

Main challenges:

The system's size

- Multidisciplinary design
- Ethical and legal issues

PV Sensor

PV sensor model

Linear model

- Wei's nonlinear model
- Dubois model
- Sensor calibration

Baan's model

$$g(t)' = \frac{1}{R(t)} = \frac{\sigma}{L}A(t) + \frac{\epsilon}{L}\frac{dA(t)}{dt}$$
$$g(t)'' = \omega\frac{\epsilon}{L}A(t)$$
$$\Delta V(t) \approx A(t) \times L$$
$$g(t)' = \frac{1}{R(t)} = \frac{\sigma}{L^2}V(t)$$
$$\Delta V(t) \approx \frac{L^2}{\sigma}\left(\frac{1}{R_{ab}} - \frac{1}{R_{ac}}\right) = \frac{L^2}{\sigma}g_b(t) = \rho L^2 g_b(t)$$

$$V(t) = k \rho L^2 g_b(t) + V_c$$

Wei's model

$$V = rac{eta}{\left(g_{
m inf} - g_b
ight)^2} - rac{eta}{g_{
m inf}^2}$$
 , where $eta = f(SV, g_{
m inf}, g_{bmax}, g_{bmin})$

Dubois' model

$$\begin{split} V &= -\pi L \left[\frac{d^2}{4} - \frac{\beta \pi^2 d^2 \left(d^2 - L^2 \right) \left(\Delta \sigma + j \omega \Delta \varepsilon \right)^2}{16 L^2 \left(Y - Y_{\text{inf}} \right)^2} \right] \quad \text{, where} \\ Y_{\text{inf}} &= \frac{\pi d \left(d^2 - L^2 \right) \left(\sigma_b + j \omega \varepsilon_b \right)}{4 L \sqrt{a_0^2 + d^2/4}} \end{split}$$

Models comparison

Sensor calibration

Main challenge:

PV measurement is <u>relative</u>

Sensor insertion

Main challenge:

C.L.Wei, 2009

Catheter insertion and mechanical bending

System Architecture

System architecture

Main challenges:

estern

- System's size
- Power source
- Transmission losses

System architecture

Main challenges:

3D design

IMPLANTABLE SYSTEMS L A B O R A T O R Y

size

System architecture

Western

← PWR

Energy Harvesting

Energy harvesting sources

Energy source	Performance	Note
Ambient RF	$< 1\mu W/cm^2$	A few mW with a short distance inductive coupled
		systems [20].
Ambient light	$100mW/cm^2$ (direct sunlight) $100\mu W/cm^2$ (office light)	Assuming common polycrystalline solar cells at
		16%-17% efficiency, while standard monocrystalline
		cells approach 20% .
Thermoelectric	$60\mu W/cm^2$	at $\Delta T = 5^{\circ}C$; typical thermoelectric generators \leq
		1% efficient for $\Delta T < 40^{\circ}C$.
Vibrational	$4\mu W/cm^3$ (human)	Predictions for 1 cm^3 generators.
	$800\mu W/cm^3$ (machine)	
Ambient airflow	$1mW/cm^2$	Demonstrated in microelectromechanical turbine at
		30 liters/min.
Push buttons	$50\mu J/N$	MIT Media Lab Device.
Hand generator	30W/kg	Nissho Engineering's Tug Power.
Heel strike	$10 - 800 \mu W$	7W potentially available (1cm deflection at 70kg per
		1Hz walk)

Energy harvesting sources

Thermoelectric - Peltier

Piezo vibrational cell

Micro glass-fuel cell

Glucose Bio-fuel cell

Main challenges:
Modelling
Simulation tools
Manufacturing and packaging

Main challenges:

- Power transmission losses
- The subject's movement
- Maximum allowed power

PV sensor interface

Main challenges:

Sensor specific
 Power consumption
 Manufacturing and packaging

Biocompatible packaging

Main challenges:

Hostile environment
 Antenna integration
 Manufacturing
 Multidisciplinary

Human Body and Technology

Multidisciplinary research

Multidisciplinary research

Utah microarray

NeuroNexus Technologies

© Robert Sobot at Telecom-Paristech, Paris France, May 29, 2013

IMI Intelligent Medical Implants

IMI Intelligent Medical Implants

IMI Intelligent Medical Implants

Prof. Miguel Nicolelis, Duke University

Western 😿

Mr. Jessie Sullivan, Prof. Todd Kuiken, Northwestern Medical School, Chicago

Photograph by Mark Thiessen

eHealth

eHealth

Our future anatomy?

- lirect brain to sound, video, radio, and gps interface
- left the inner ear language translator
- Solution by bi-directional brain to brain and machine interface
- artificial limbs, titanium skeleton, ...

Closing comments

Intensive research, created opportunities:

- litra-low volume size RFIC
- processing algorithms
- 3D IC packaging
- power scavenging
- bio-battery
- heat management
- Complexity
- Self-repair

Implantable Systems Laboratory

Kyle, Gail, Kyle, Kaidi, Shawon, Sneha, Sorin, and myself (Lijun and Abdul not present)

Our sponsors

Where Next Happens

Liberté • Égalité • Fraternité **RÉPUBLIQUE FRANÇAISE**

